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Abstract

Defective software modules have significant impact over
software quality leading to system crashes and software
running error. Thus, Software Defect Prediction (SDP)
mechanisms become essential part to enhance quality
assurance activities, to allocate effort and resources more
efficiently. Various machine learning approaches have
been proposed to remove fault and unnecessary data.
However, the imbalance distribution of software defects
still remains as challenging task and leads to loss accuracy
for most SDP methods. To overcome it, this paper
proposed a hybrid method, which combine Support Vector
Machine (SVM)-Radial Basis Function (RBF) as base
learner for Adaptive Boost, with the use of Minimum-
Redundancy-Maximum-Relevance ~ (MRMR)  feature
selection. Then, the comparative analysis applied based on
5 datasets from NASA Metrics Data Program. The
experimental results showed that hybrid approach with
MRMR give better accuracy compared to SVM single
learner, which is effective to deal with the imbalance
datasets because the proposed method have good
generalization and better performance measures.
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Selection, Machine Learning, Support Vector Machine,
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1. Introduction

Software products play an important role in our daily
lives. Modern developed or developing countries were
influenced by software systems and software product
supports almost every field, including e-commerce,
manufacturing, transportation, finance and other
application areas. The software consists of a set of
algorithms, practices, and running modules. Designing and
developing the software system basically requires planning
and allocating resources such as time, human experts,
computer resources, tools, and infrastructure. As long as
the role of software is important, software companies need
to consider the defect rates for them. Even if the company
has a lot of development experience, software failure rates
are still increasing from time to time.

Software defect occurs when the results of a software
application or product do not meet end-user expectations
and software requirements. These defects are a type of
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programming error that can be caused by source code or
requirement errors, resulting in failures, unpredictable or
unexpected results. These defects adversely affect software
quality and software reliability, leading to loss of capital,
time and energy consumption. Maintenance costs and
efforts are also increased in order to resolve failures. Thus,
early prediction of software defects becomes a research
area of concern.

Since the last two decades, researchers have been
proposed a number of predictive models by using several
types of classifiers such as Support Vector Machine
(SVM), Random Forest (RF), Decision Tree (DS) to
determine whether the software system defects are likely to
occur. Unfortunately, the imbalance nature of the dataset
becomes a major challenge in SDP process and leading to
reduce the accuracy of the learning model. Imbalance
nature means that the number of defective modules is
relatively smaller than the number of non-defective
module. If the target classes can be separated using the
available features, then the distribution of the classes
between them is not problematic. It only becomes an issue
when this property affects the performance of the
algorithms or the models that can be obtained.

Ensemble-based algorithms can handle and overcome
imbalance issues to improve the accuracy and performance
of prediction models. Among ensemble methods,
AdaBoost has successful in building a strong learning
model by combining weak classifiers as base learners.
Ordinarily, AdaBoost uses decision tree as default base
learner. However, the proposed system used SVM as base
learner for AdaBoost because SVM is also a well-known
classifier used in binary classification. Combining two
famous algorithms can lead to get accurate results for
imbalance nature. In addition, MRMR was also applied for
feature selection. Experimental results of this hybrid
approach have conducted on five NASA MDP datasets and
comparison analysis applied between SVM single learner
and proposed hybrid methods, which were evaluated by
using Accuracy, Precision, Recall and F-score measures.

2. Related Work

A. Alsaeedi et.al [1] carried out a comparative study of
supervised machine learning methods: Random Forest
(RF), Decision Tree (DS), Support Vector Machine



(SVM), Linear Regression (LR) and ensemble classifiers
AdaBoost and Bagging. The SMOTE oversampling
technique was also applied to training data to conduct the
experiments based on 10 NASA datasets. The outcomes of
the findings demonstrate that RF, AdaBoost with RF, and
bagging with DS performed well in imbalance issues.

A. Abdou et.al [2] investigated 3 types of ensemble
learners: Boosting, Bagging and Random Forest with
resample technique to carried out comparative analysis
using 8 based learners which were tested on 7 datasets. The
experimental result expressed that the accuracy of using
ensemble learners is better than single learners.

Y. Gao etal [3] proposed a method combining
AdaBoost and Back-Propagation Neural Network (BPNN)
to solve class imbalance problems and demonstrate the
comprehensive performance with a BPNN model based on
four datasets. It shows that BP-AdaBoost has a stronger
generalization and better performance than BPNN,
although it is still insufficient to predict minority class data.
However, the author believes that the implementation of
AdaBoost can handle imbalance dataset and feedback a
high accuracy result if the suitable classifier is adapted for
AdaBoost to deal with a variety of classification problems.

X. Li et.al [4] focus to proposed the algorithms named
AdaBoostSVM and Diverse AdaBoostSVM which is the
improve version to deal with accuracy/ diversity dilemma.
Then, demonstrate that AdaBoostSVM achieves better
performance than SVM on imbalance dataset problems and
performs better than AdaBoost with neural network weak
leaners.

S. Aleem et.al [5] also explored to compare performance
of 11 methods: NB, MLP, SVM, AdaBoost, bagging, DS,
RF, J48, KNN, RBF, and k-means. The results conducted
onl5 NASA datasets and claim that SVM and bagging
techniques performed well in majority of datasets.

P. Mahajan [6] proposed 2 models: SVM combined with
Principle Component Analysis (PCA) and AdaBoost
SVM-RBF with PCA. And make a comparison among
different types of SVM kernel functions and comparative
analysis of 2 models demonstrate that the AdaBoost
learning approach is much better than the others.

3. Proposed System Design

The proposed hybrid model for SDP based on boosting
method is composed with 5 phases as shown in figure 1:
(1) Data Preprocessing: Check and remove missing

value and invalid feature column.
(2) Data Discretization: Convert continuous data values
into finite set of counterparts.
(3) Feature Selection: Filter the features based on
MRMR discriminating criteria
(4) Model Building: Develop hybrid SVM AdaBoost
model to get better results, and make a comparison
with SVM based single learner.
(5) Evaluation Measurements: Accuracy and different
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performance measures was used to compare the hybrid
method results against the single classifier results
based on different size of imbalance datasets.

Input Dataset

Preprocess data

v
Discretize data
Select Features
using MBMR
Split data
|
Construct models
using AdaBoost RBFSVM
Prediction using AdaBoost
RBFSVM models

v
¥
frmsee ]
Classifier Model
¥
Predicted Results

Figure 1. Proposed system design for software
defect prediction

3.1. Dataset Description

As for datasets, there are five public SDP data available,
namely PC1, PC2, PC3, PC4 and PC5 from NASA Metrics
Data Program (MDP) defect datasets is used in this
experiment. All of them are imbalance datasets which
means the number of non-defective samples are much
bigger than defective samples. These datasets have been
collected from flight software written in C functions for
earth orbiting satellite. Machine learning theory cannot
apply directly to the software source code. Generally, each
and every software modules had to measure with different
software metrics or features extractors. The quality of
selected datasets for this paper has measured with McCabe
and Halstead extractors such as cyclomatic complexity,
design complexity, time estimator, effort, operators,
operands, length of the program, line count etc., and these
metrics are the main input for defect prediction model.
Defective modules identification can be divided into two
classes. If the value is greater than zero, the software is
classified as defect-prone, otherwise it is said to be free



defect-prone. The detail structure of dataset is described in
table 1.

Table 1. The detail of dataset

Data Instances | Features Defective (%)
PC1 1107 41 6.865
PC2 5589 41 0.411
PC3 1563 41 10.24
PC4 1458 41 12.21
PC5 17186 40 3.002

3.2. Data Preprocessing

Preprocessing stage is composed of two steps to handle
invalid values. The first step is to check row by row
instances and delete a particular instance if it has missing
values or the values equal to ‘?° or the one which
theoretically impossible occurrences. Some feature
calculation theory can be referred as follow:

For examples, items were removed if:

* halstead length != num operands + num operators

*  cyclomatic complexity > 1+ num operators

* call pairs > num operators

* average cyclomatic complexity > maximal

cyclomatic complexity

*  number of comments > lines of code

*  public methods count > class methods count

The second step is to check column by column feature
data and also remove particular column if it has the same
constant value for the whole instances. The benefits of
doing preprocessing is to facilitate the steps to extract
desired information from the dataset and this works better
in model building if the data has no noisy data.

3.3. Data Discretization

All of the datasets consist of continuous data which
means the data metrics are described as an infinite number
of possible values. Therefore, after obtaining a cleaned data
set, a discretization method was applied to convert these
continuous values into discrete equivalent values. This is
because empirically discretization gives better results in
discrete computation than continuous value computation in
Mutual Information based feature selection methods like
MRMR.

Discretization, also called binning or quantization,
divides continuous numerical features into the predefined
number of categories (bins), and makes the data discrete.
The proposed system creates the instances with three bins,
ordinal encoding based on the centroids of K-Means
clustering procedure. The number of bins that we select has
an impact on model building performance. Different
datasets have the different number of bins to divide in order
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to get the best results. But the proposed system selects three
fix bins for every dataset for making comparison purposes.

3.4. Feature Selection

After the data metrics have been preprocessed and
discretized, one of the major development processes in
machine learning is to select the appropriate feature
selection algorithm for the dataset. This is because it has a
great impact on the classification performance and
accuracy of model predictions. Prediction performance is
improved by removing redundant features and choose the
right features. On the other hand, choosing irrelevant
features can adversely affect not only performance but also
the accuracy of the model.

Feature selection approaches can be roughly divided
into three classes: wrapper-based methods, filter-based
methods, and embedded methods. Among them, filter-
based feature selection methods can perform independently
from the learning procedure while the other methods,
wrapper-based and embedded methods, combine feature
selection and learning process to choose an optimal subset
of features. Such kind of combined process typically
requires the use of a nested cross-validation procedure
which can increase computational cost and can lead to
overfitting. For that reason, the proposed system focuses to
use filter-based feature selection approach.

Among filter-based methods, the MRMR algorithm is
the famous one that selects the features which are both
maximally relevant to the target class and minimally
redundant among themselves. In this algorithm, relevance
and redundancy are calculated using Mutual Information
for discrete data. For continuous data, there are two ways
to apply MRMR. That is, firstly, apply data discretization
method to convert continuous data into equivalent discrete
data, and then apply Mutual Information. The second way
is to calculate relevance using F-statistic and calculate
redundancy using the Pearson correlation coefficient.
MRMR website described that the first way leads to get
better results than continuous value mutual information
calculation. That’s why the proposed system used data
discretization method first, and then apply the Mutual
Information equation to calculate relevance and
redundancy.

Mutual Information calculation I(X;Y) between two
random variables, whose joint distribution P(x,y) is
defined in equation 1,

IX;7) = Z Z P(x,y)log

XEX yEY

P(x,y)

PoPG) (1)

where, P(x) and P(y) are the marginal distribution of
value x and y.

Relevance V and redundancy W calculation based on
mutual information was defined in equations 2 and 3.



MaximumV = %Z I1(h, i) (2)
i€s
. 1 .
Minimum W = Wz 1(i,)) (3)
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In these definitions, s is the set of features, i,j are
features class and h is the target class (defective).

After getting the order of the features for relevance and
redundancy, two common types of objective functions
apply to extract important features. These two functions are
Mutual Information Difference criterion (MID) and Mutual
Information Quotient criterion (MIQ), which are
representing the quotient or the difference of redundancy
and relevance, as described in equation 4 and 5.

1
MRMRy;p = maxeq [1(i,h) — mZ’("J” (4)

JEs

1
MRMRyig = maxica, {16 1) / [rr Y 16,10

jes

(5)

The evaluation measurements value is vary based on the
number of features that we select. According to the analysis
results among ten, fifteen and twenty features, ten features
have greater effects and higher accuracy than the others.
Thus, the proposed system select ten features from all
datasets and comparative analysis are applied based on
these selected features.

3.5. Model Building

There are a lot of machine learning algorithms to build
a predictive model for classification. Among them, SVM is
considered one of the well-known classifiers to achieve
high classification accuracy and it can deal with the linear
problem as well as non-linear problems by using Kernel
Function [6]. The main concept of SVM in binary
classification problem is to find optimal separating
hyperplane by maximizing the margin distance between
them. Various types of kernels function like Linear,
Quadratic, Polynomial, Radial Basis Function (RBF) and
Multilayer Perceptron are used to map original data
samples into higher dimensional feature space. The
proposed system used RBF kernel function because it
provides better results when the total number of features in
dataset is small and the total number of the data sample is
intermediate.

For the class imbalance problem, there are 2 levels to
handle, that is to use the methods like resampling or feature
selection at the data level and apply cost-sensitive or
ensemble methods or single class learning at the algorithm
level. Among ensemble methods, compare with bagging,
boosting method performs better. As the most popular
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boosting methods, Adaptive Boosting was successful for
binary classification and it trains the weak learner to be a
strong learner by adjusting the weight value. Thus, this
system used a Boosting method for algorithm level and
MRMR feature selection algorithm for data level to
overcome the imbalance problem. RBFSVM is used as a
base learner for boosting method, but as mention before,
SVM is a strong learner which can stand alone to divide
classes for the data samples and it cannot work well as a
base learner when integrate with boosting method. In order
to use SVM and AdaBoost effectively, SVM has to be
weakened first before combine with AdaBoost. The
AdaBoost RBFSVM method flow is described in figure 2

[4].

Algorithm: AdaBoostSVM
L. Input: a set of training samples with labels {(x1,1),.... (xn,yn)}:
the initial o, @in;i: the minimal o. o pmin: the step of o, Tstep.
2. Initialize: the weight of samples: w! = 1/N, foralli=1,..., N.
3. Do While (o > omin)

(1)Use RBFSVM algorithm to train the weak learner hy on the
weighted training sample set.

(2)Calculate training error of h; : ¢; = Zfil urf. Yi 7 he(x;).

(3)If €¢ > 0.5, decrease o value by seep and goto (1).

(4)Set weight of weak learner hy : ay = %ln(l{;r"-).

t
. 3 2 Lo+l wiexp{—aryiheix,)}
(5)Update training samples’ weights: w; " = ————F~———"—

Cy
where C; is a normalization constant. and ¥ | w!t! = 1.
4. Output: f(x) = sign(T7_, arhi(x)).

Figure 2 AdaBoost RBF-SVM

SVM is composed of two parameters: a Gaussian width
o and a regularization parameter C that impacts on
classification performance. Overlarge 0 makes RBFSVM
too weak and smaller o0 makes it stronger. And also, the
variation of parameter C effects on the complexity of the
learning model. Thus, adjusting both parameters is
essential. When combine with AdaBoost, a relatively large
o value is preferred to get a weak learning ability of SVM.
As described in figure 2, AdaBoost, machine learning
meta-algorithm first initialize weight value to all data
samples. When SVM training classifier obtains accuracy
higher than 50%, update the weight for each data points
and the process continue until o decreases to a
predetermined minimum value. By doing this, the
proposed system moderately generates accurate SVM
classifiers with uncorrelated errors and demonstrates better
generalization performance than the existing AdaBoost
methods on imbalance classification problems.

3.6. Evaluation Measurements

In the case of software defect prediction models, there
are four possible outcomes for the entity after a prediction
is made about whether the entity is defective or clean. The
outcomes are as follows:



e A defective entity is classified as defective (true

positive, TP)

o A defective entity is classified as clean (false

negative, FN)

e A clean entity is classified as clean (true negative,

TN)

e A clean entity is classified as defective (false

positive, FP)

Based on these outcomes, accuracy measurement will
be used for this work and the most popular measure, F-
score will be applied to evaluate the performance. Higher
F-score is a sign of a better model. Accuracy, Precision,
Recall and F-score measurements can be calculated as
follows:

Accuracy: percentage between the total number of
correctly classified entities (TP + TN) and the whole
entities (TP + TN + FP + FN).

| ~ TP + TN (6)
Ceuracy = T Y TN + FP + FN

Precision: a measure of result relevancy calculates by the
proportion of correctly classified entities as defective (TP)
among all entities classified as defective (TP + FP).

TP
[ 1 o — 7
Precision TP T FP (7)

Recall: known as sensitivity to measure how many truly
relevant results are returned, which can calculate by the
proportion of correctly classified entities as defective (TP)
among all defective entities (TP + FN).

TP
= —— 8
Recall TPTEN (8)

F-score: a measurement that combines precision and recall
as harmonic mean.

P _ 2% Precision * Recall (9)
SC0Te = b ecision + Recall

4. Experimental Result

For the experiments, this system trained 5 imbalance
datasets with SVM single learner and AdaBoost SVM with
MRMR hybrid approach to analyze the performance and
accuracy. Before building a learning model, ten features
are selected by using MRMR methods. Different dataset
has different types of selected features in order to get best
results. The most common selected features are
parameter_count, design complexity, design density,
halstead level and cyclomatic_density. All of them have

higher MRMR value which are mostly relevance with
target class in order to improve result prediction. After that,
these datasets were split into two parts: training data and
testing data. 70 percent from each dataset was taken as
training data and the rest 30 percent was regarded as testing
data for five datasets. Then, comparative analysis and
evaluation measures has performed to the outcomes from
both learning models: SVM and Hybrid approach with

MRMR, which are summarizing in table 2 and table 3.

Table 2. Experimental result for SVM

Dataset | Accuracy | Precision | Recall F-score
PCA 0.912 0.967 0.940 0.954
PC2 0.970 0.973 0.997 0.985
PC3 0.890 0.939 0.942 0.941
PC4 0.959 1 0.959 0.979
PC5 0.950 0.956 0.993 0.975

Table 3. Experimental result for MRMR + Hybrid

method
Dataset | Accuracy | Precision | Recall F-score
PC1 0.952 0.964 0.986 0.975
PC2 0.960 0.972 0.987 0.980
PC3 0.931 0.940 0.990 0.964
PC4 0.986 1 0.986 0.993
PC5 0.950 0.952 0.998 0.975

Generally, both of the learning methods give better
results and most of the evaluation parameters values are
over 90%. This is quite enough for some software systems
to make early prediction by using only SVM. But as for
safety critical systems, even 0.01% improvement rate is
still important for them. Moreover, using correct classifier
is also important to overcome imbalance problem as well.

The problem of imbalance dataset is that models trained
on imbalance datasets often have poor results when they
have to generalize in class prediction. The efficiency of a
software defect prediction model also greatly depends on
the training class distribution that means if we train the
model with large amount of non-defective data, the
predictive result will show as non-defective even we test
with defect modules.

However, model building was performed using training
data and evaluation was performed using unseen testing
data. According to the experiments, hybrid method with
MRMR give good generalization when classify these
unseen observations. And predicted result also acceptable
because the result did not come out the same class value
for all testing data. This can be realized by checking
precision and recall value.

The graph in figure 3 shows the accuracy and f-score
measures for hybrid method results are obviously much
better than single base learner for imbalance datasets. The
average improve rate for accuracy, recall and f-score are




3.5 percent, 4 percent and 2 percent respectively. In the
meanwhile, precision values for both methods are similar.

SVM vs Hybrid for PC1

arcCl (SVM) mPCl (Hybrid)

SVM vs Hybrid for PC2 SVM vs Hybrid for PC3

0.96 0.98 1 0.9 0.95

OPC2 (SVM) mPC2 (Hybrid) OPC3 (SVM) mPC3 (Hybrid)

SVM vs Hybrid for PC4 SVM vs Hybrid for PC5

Foscore I ——— F-score  mmm—
Recall  ——— Recall  ——u

Precision  ——l Precision  —

Accuracy  E—|—— Accuracy  m—

0.92 094 096 098 1 1.02 092 094 096 098 1 1.02

aPC4 (SVM) mPC4 (Hybrid) aprCs5 (SVM) mPCS (Hybrid)

Figure 3 Comparative analysis of SVM and
Hybrid method based on 5 datasets

Based on the experimental result, we can conclude that
hybrid method is good enough and give better result than
SVM in imbalance dataset. But in case of huge dataset
which have less than 1 percent defective rate, SVM
performs better than hybrid. Compare PC2 and PC5 graphs
in figure 3, PC5 data samples size is double larger than
PC2. Although PC5 have huge data size, the evaluation
measures are not much difference between SVM and
hybrid. As for PC2, which have 0.4% defective rate, hybrid
method is slightly different than SVM. But both of them
can still give great results for class imbalance problems.
Thus, to pick suitable learning method based on the nature
of dataset is important in defect prediction systems.

Moreover, the other factors also have impact on the
accuracy and performance, such as the selected numbers
for features, numbers of bin in discretization stage, the
predefined value for o in SVM and the splitting ratio for
training and testing data size. For the purpose of making
comparison, the proposed system used fix numbers for all
datasets. Such kinds of value adjustments factors without
using fix data might be tend to get higher accuracy and
performance rather than current value. Thus, to choose
correct values for other parameters and to build a suitable
weak classifier are the key vectors for AdaBoost method.
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5. Conclusion and Future Work

This paper focused on proposed a hybrid method that
use SVM-RBF as base learner for AdaBoost and combine
it with MRMR feature selection algorithm. According to
my analysis, there is no paper was conduct the experiment
for defect prediction system by combining these SVM-
RBF AdaBoost with MRMR method. This proposed
system aimed to enhance SVM in order to solve imbalance
issues. The outcome showed that both methods have great
results on the imbalance dataset. Actually, the hybrid
approach is much better compared to the traditional SVM
except the dataset has an extremely low defective rate.
Moreover, as mention before, other factors have an impact
on building models and performance. Therefore, one future
direction is to explore every factor, adjust the value and
figure out the most important factors which have greatly
impact on performance and try to find the best optimal
value combination to get the highest accuracy results.
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